728x90 반응형 머신러닝1 MLOps의 필요성.. "MLOps가 왜 필요할까?" 단순한 AI모델을 배포하는 것은 쉽지만 이를 계속해서 유지보수 및 고도화해나가는 것은 많은 리소스가 든다. 그 예로는 프로세스간의 종속성, 문서화, API 유지, 리팩토링(소스코드수정) 등이 있다. ML에서는 이러한 문제만 해결하는 것이 힘든 부분들이 있기 때문에 MLOps의 필요성이 부각된다. "좋은 MLOps를 구성한다는 것은 어떤 것을 고려해야하나?" 데이터의 변화가 잦고, 모델 성능 개선을 위한 재학습 그리고 도메인 상의 라벨링에 대한 피드백과 크라우드 소싱에 대한 문제는 쉽게 해결하기 힘들다. 이상적으로 ML프로그래밍을 한다는 것은 변하는 데이터셋에 유연하고, 모델도 재사용가능하기 좋아야 한다. 당연히 문제 정의도 명확히 해야한다. 추가적으로 데이터/모델에 대한 검.. 2022. 6. 15. 이전 1 다음 728x90 반응형